In vivo gene delivery and visualization of corneal stromal cells using an adenoviral vector and keratocyte-specific promoter.
نویسندگان
چکیده
PURPOSE This study was conducted to determine whether intrastromal injection of adenoviral construct could be used to transfect corneal stroma cells effectively in vivo and to determine whether a tissue-specific promoter could be used to express exogenous genes in keratocytes. METHODS An adenoviral construct with a cytomegalovirus (pCMV)-driven enhanced green fluorescent protein (EGFP) reporter gene was injected into the stroma of murine corneas. In vivo expression was quantitated and samples were analyzed by in vivo stereomicroscopy, and ex vivo expression was determined by confocal three dimensional (3-D) reconstruction. The 3.2-kb keratocan promoter was used to drive tissue-specific reporter gene expression in vivo. RESULTS EGFP expression was first detected in vivo 11 hours after injection of adeno-EGFP in the corneal stroma, with a duration of approximately 3 weeks. Ex vivo wholemount cornea confocal analysis with 3-D reconstruction allowed visualization of EGFP expression in corneal stroma cells, to accurately assess cellular architecture and distribution in the corneal stroma. Naked pCMV-EGFP plasmid DNA did not express the reporter gene to the levels of the adeno-EGFP. The 3.2-kb keratocan promoter was capable of driving EGFP tissue-specific expression in the cornea. CONCLUSIONS Intrastromal injection of adenovirus packaged DNA constructs is a rapid and efficient way to deliver and express genes in the corneal stroma. Intrastromal injection is also capable of delivering tissue-specific promoter constructs to the corneal stroma for gene expression. Furthermore, 3-D reconstruction provides a powerful tool for enhanced visualization of the corneal stroma environment and cellular biology.
منابع مشابه
Human wild-type superoxide dismutase 1 gene delivery to rat bone marrow stromal cells: its importance and potential future trends
Objective(s): Human superoxide dismutase 1 (SOD1) is the cytosolic form of this enzyme it detoxifies superoxide anions and attenuates their toxicities and concomitant detrimental effects on the cells. It is believed that the amount of these enzymes present in the oxidative stress-induced diseases is crucial for preventing disease progression. Transfection of rat bone marrow stromal cells (BMSCs...
متن کاملGene Delivery to Mesenchymal Stem Cells
There is increasing trend in using recombinant stem cells as novel therapeutic candidates in different diseases. These studies encompass different applications from targeted homing of Mesenchymal Stromal (stem) Cells (MSC), to arming them with different cytokines. Resistance to transfection or transduction methods had urged researchers to look for better gene delivery alternates and optimizing ...
متن کاملDesigning E1 Deleted Adenoviral Vector by Homologous Recombination
Adenoviruses are used extensively to deliver genes into mammalian cells, particularly where there is a requirement for high-level expression of transgene products in cultured cells, or for use as recombinant viral vaccines or in gene therapy. In spite of their usefulness, the construction of adenoviral vectors (AdV) is a cumbersome and lengthy process that is not readily amenable to the generat...
متن کاملRepair of Spinal Cord Injury (SCI) Using Bone Marrow Stromal Cell Transfected with Adenoviral Vector Expressing Glial derived Neurotropic Factor (GDNF) in a Rat SCI Model
Back ground Subsequent to spinal cord injury many pathological changes may occur that could lead to inappropriate environment for repair. The Most important of such changes is the death of neurons. Exogenous administration of growth factors that modulate neuronal survival, synaptic plasticity, and neurotransmission has been proposed as a potential therapeutic treatment for SCI. Among these gr...
متن کاملGene Expression under F8 Promoter Driving In Mouse Hepatoma Cells: A Step towards Gene Therapy of Hemophilia
Background and Objectives: Significant progress has been made in treatment of hemophilia. Ex-vivo gene therapy is going popular due to the capability of this method in using isogenic cells for genetic manipulation and reintroducing them into same host after proliferation. Most gene therapy techniques use viral vectors, which usually harbor a strong and non-specific promoter (e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 45 7 شماره
صفحات -
تاریخ انتشار 2004